
Susquehanna User Manual - v0.1.2 Milford

thetacola

December 14, 2024
Revision 3

Contents

1 Introduction 2
1.1 Tabs . 3
1.2 Tools . 4
1.3 Book . 5

2 The File Tab 7
2.1 New Language . 8
2.2 Open Language . 8
2.3 Info . 9
2.4 Report Bug . 9

3 The Phonology Tab 10
3.1 View Phonology . 11
3.2 Edit Phonology . 11
3.3 Phonotactics . 12

4 The Orthography Tab 13
4.1 View Orthography . 14
4.2 Edit Orthography . 14
4.3 Script . 14

5 The Grammar Tab 15

6 The Lexicon Tab 16
6.1 View Words . 17
6.2 Edit Words . 17

7 The Settings Tab 18

1

Chapter 1

Introduction

Figure 1.1: The three main components, labeled.

Susquehanna is a program made for the creation and management of con-
langs. This application may also find use as a tool for the documentation of
natural languages. Note the three main parts of the interface in Figure 1.1,
those being the tabs, the tools, and the book. The tabs categorize tools into
groups, the tools allow the user to switch between books, and the book allows
the user to interact with the language. The following sections will allow you to
become familiar with these parts of the interface. As of this version, Susque-
hanna autosaves all changes as soon as they are made, so one does not have to
worry about data loss.

2

1.1 Tabs

Figure 1.2: The six tabs in Susque-
hanna.

Tabs can be found on the left-
most edge of the application when-
ever it is open. These tabs cate-
gorize tools into categories, so that
each tool is easier to find. These
tabs are also color coded, and the
color of the book background is de-
cided by the currently selected tab.
To check which tab is being used, the
user can see which color book back-
ground matches which color tab.

There are six tabs, those being
File, Phonology, Orthography, Gram-
mar, Lexicon, and Settings. This
manual covers each tab in detail, for
more information on each tab please
check the table of contents to find
the page about a given tab. When
using Susquehanna on low-resolution
displays or small window sizes, the
tabs can be scrolled through using the
scroll wheel. Using the PgUp and PgDown keys on the number pad also works.

For developers: Adding a new tab to Susquehanna is fairly sim-
ple. This can be done by editing net.oijon.susquehanna.gui.Navbox.
First, create an image for your new tab. A template for this can
be found in src/main/resources/img. Save your image as {name}-
tab.png. Then, add a new BinderTab instance in the Navbox class,
next to the rest of the BinderTab instances. Make sure to set the
name of the tab to the name you picked earlier for the image, mi-
nus the ”-tab.png” bit. Otherwise, your image will be unable to link
to this tab. Then, edit the line starting with ”VBox navVBox” in
Navbox.Navbox(), and add your tab to the end of the list. To make
this tab functional, add {tab variable name}.createTransferAction({book
ID}) to Navbox.createTransferActions(). More information on book IDs
can be found in Section 1.3. Once these steps are done, you should have
a fully functional tab.

3

For developers: There is no limit set for the amount of tabs that
can be loaded at a given time by Susquehanna, however performance
and general usability will be impacted when adding several hundreds
of tabs. Furthermore, as JavaFX parents can ”only” contain Inte-
ger.MAX VALUE (around 231) children, there’s likely a limit of around
231 tabs. It should be noted that Susquehanna is not built to handle this
many tabs, and would likely crash from the amount of images needed
to render before this point (each tab image following the template is
around 2.81kB, 2.81 ∗ 231 ≈ 6, 034, 429, 051kB ≈ 6TB, and the JVM
is not happy handling anything more than 4TiB of memory at a given
time). Scrolling through this amount of tabs trying to find the correct
one would also likely not be a pleasant experience for the user, so tabs
should be kept to a rather low amount if possible.

1.2 Tools

Figure 1.3: An example of a tool button. This
tool button is the Info button in the File tab.

Tools are various pages
that allow for the editing of
a language. These take the
form of buttons to the right
of tabs. The container that
all of these buttons are in
is called the toolbox. Each
tab has a different toolbox
corresponding to its category.
For example, the phonology
tab has the ”View Phonol-

ogy” and ”Edit Phonology” tools, while the file tab has the ”Info” and ”Report
Bug” tools. The page each tool takes the user to is also called a book. These
tools are the main way different views are switched between in Susquehanna.
Tool buttons are colored the same color as the tab they belong to as to distin-
guish between different selected tabs. The toolbox also serves the purpose of
showing what language is selected at the top, however the language selection
text itself is not a tool, and is not clickable. Each tool is described in detail
throughout this manual, for a specific tool’s functionality, look at the table of
contents to find the tool you are looking for.

4

For developers: Adding a tool is quite simple in Susquehanna. To
add a tool, first find the toolbox you want to add it to. These are located
in net.oijon.susquehanna.gui.toolboxes. Then, create two files, one called
{your tool name}.png and the other called {your tool name}-pressed.png.
Put these files in src/main/resources/img. There is also a template but-
ton in this folder to use. Once that is done, create a new ToolButton
object, and give it a name. Like tabs, the name of the tool automati-
cally links its image. Feel free to add any line breaks or capitalization
to the name of your ToolButton, as those are automatically filtered out
when finding the image. Then, create a transfer action using {your vari-
able name}.createTransferAction({your book ID}). More information on
book IDs can be found in Section 1.3. After your transfer action has
been created, edit the line starting with this.getChildren.addAll(, and
add your variable into it. Once this is done, your button will appear in
Susquehanna!

For developers: Adding a new toolbox is a bit more com-
plicated than adding a tool. To add a toolbox, first create a
new class in net.oijon.susquehanna.gui.toolboxes. Make sure this
class extends Toolbox! Next, either choose a background from
net.oijon.susquehanna.gui.resources.Backgrouns, or add a new back-
ground to that file. To add a background, create a public static
Background, with the file name, x and y repeats, and background
size as parameters. The two main BackgroundSizes are Background-
Size.DEFAULT (provided by JavaFX) and STRETCH TO FIT SIZE
(provided by Susquehanna). You could also make your own Background-
Size based off STRETCH TO FIT SIZE. Once a background has been
either selected or created, head back to your new class and, in your
constructor, add super(Backgrounds.{your background}) as the first line.
Make sure to import the backgrounds class! Then, add a few ToolButtons
using the tutorial above. Once done, go into net.oijon.susquehanna.App,
and where your books are instantiated, set their toolbox to your new tool-
box using {book variable name}.setToolbox(new {your toolbox class}()).
This adds the toolbox to the given book. However, to access the tool-
box, there must be at least one book with the given toolbox that can be
accessed directly via a tab. To see how to create tabs, see Section 1.1.

1.3 Book

Books are the main display of Susquehanna, and are responsible for allowing
the user to edit their language. Books display whatever is needed for their
attached tool. Typically, books have two sections, those being the left and right
pages. However, some books, such as the View Phonology book, only have one

5

page that stretches out for the whole display. Books and tools are interlinked in
that books are only accessible through tools, and each tool has a related book.
As such, the names of the books in this manual is the same as the name of the
tool for said book. Each book is described in detail throughout this manual,
for a specific book’s functionality, look at the table of contents to find the book
you are looking for.

For developers: Creating a new book is similar to creating a new
toolbox. First, create a new class in net.oijon.susquehanna.gui.scenes.*,
where * is replaced with the tab the associated tool should be a part
of. In your new class, make sure to extend Book! Then, create a pub-
lic constructor, and initialize the superclass inside it. Then, set your ID
and toolbox. Book IDs should follow the format of {tab}.{tool name}, as
some functions depend on the tab being a part of the ID. Once that’s set,
create your various JavaFX components. To add them to the pages, use
addToLeft() to add them to your left page, and addToRight() to add them
to your right page. You may also want to change the font of labels so that
it is standardized with the rest of the application, using the OPENSANS
font in net.oijon.susquehanna.gui.resources.Fonts will make the font the
same as other labels in Susquehanna. If your book allows data to be
edited, create a refresh() function that will re-render various components
when called. If you would like to utilize the embedded OLog in Susque-
hanna, you can access the log by using App.getLog(). After your book has
been designed, add it to the books registry in net.oijon.susquehanna.App.
This can be done via books.add(new {your book class}()). Set a tool and
perhaps a tab to point to your book (see Sections 1.1 and 1.2), and you
should have a functional book in Susquehanna!

6

Chapter 2

The File Tab

Figure 2.1: The File tab, when first clicked.

The first tab a user will encounter when starting up Susquehanna is the File
tab. This tab is responsible for things such as selecting a language, seeing debug
information, and sending bug reports. In short, the file tab allows the user to
change what is being worked on, and report when anything goes wrong.

7

2.1 New Language

Figure 2.2: The New Language
tool button.

The New Language book allows the user
to create a new language. This language can
then be edited with other tools in Susque-
hanna. At the moment, the New Language
book is a bit bare-bones. There are two text
fields, that being the Language Name and the
Language Autonym. Although the Language
Name is listed as being unable to change, this
will change in the near future. To create a
language, simply type the information needed
into this form, then click the ”Create!” but-
ton. In the future, more information will be able to be added on this book, such
as a language image and relations to other languages.

2.2 Open Language

Figure 2.3: The Open Language
tool button.

The Open Language book allows the user
to open a previously created language and
edit it. This book consists of a list of all
languages available, with information such as
the name, date created, and date last modi-
fied. From this page, the user can either se-
lect or delete languages. To select a language,
simply click the ”Select” button underneath
the language. To delete a language, click the
”Delete” button to the right of the ”Select”
button. A popup will appear asking if the

user is sure they want to delete the given language. Selecting ”Yes” on this
popup will delete the language. There is also a ”Refresh” button on this page.
If the user has created a new language, and despite this the new language is
not appearing in the list, they can click the ”Refresh” button to refresh the list,
showing the new language.

For developers: Language files are stored in your home directory. On
Linux, this can be found at ˜/Susquehanna/, and on Windows it can be
found at C:\Users\{username}\Susquehanna on a typical configuration.
The directory is created in the user.home folder provided by Java, so if
the folder cannot be located in these places, check your user.home. Files
with the .language extension are those that store languages, and the file
names correspond to the name given to them when first created via New
Language. Other files, such as phonological systems, glossing systems,
and logs can also be found in this directory.

8

2.3 Info

Figure 2.4: The Info tool but-
ton.

The Info book is the first book to ap-
pear when opening Susquehanna. On the left
page, this book contains version information
for Susquehanna, along with version informa-
tion for each of its dependencies. On the right
page, debug information is present, and can
be easily copied and pasted somewhere else.
This page also displays if the currently used
build is a snapshot, and if so its exact build
ID.

For developers: Make sure that, before releasing a new version of
Susquehanna, that the version information is correct! It displays on this
page, so this page allows you to rather easily check. If it’s out of date, ver-
sion information can be changed in net.oijon.susquehanna.SystemInfo.

2.4 Report Bug

Figure 2.5: The Report Bug
tool button.

The Report Bug book allows both sug-
gestions and bug reports to be added from
inside the application. This section requires
a GitHub account, as GitHub does not sup-
port anonymous bug reports, so this page will
prompt with a login. Once logged in, the user
will likely need to insert their two factor au-
thentication code, then they will be brought
directly to the new issue page. This page con-
tains an embedded browser, so one can browse
GitHub from here as well. Before reporting a

bug, it would be a good idea to check to make sure the bug in question has
not been reported before. If it has, commenting on the issue saying it is also
affecting you may help in fixing the bug.

9

Chapter 3

The Phonology Tab

Figure 3.1: The Phonology tab, when first clicked.

The Phonology tab is all about the sounds of a language. This tab is pri-
marily focused on changing what sounds appear in a language, and not much
else.

10

3.1 View Phonology

Figure 3.2: The View Phonol-
ogy tool button.

The View Phonology book is one of the
few mono-paged books. This page allows the
user to see the current phonology, without
worrying about accidentally clicking on and
editing something. For the default phono-
logical system (International Phonetic Alpha-
bet), this view is split into three tables, those
being the consonants, the vowels, and the
sounds that do not fit in a table in the IPA.
Phonemes added to the language are marked
in green. Phonemes with diacritics will ap-
pear next to their non-diacriticized counterparts.

For developers: Susquehanna is bundled with OLing, which has
rather powerful phonological tools built-in. If the IPA is not the
phonological system you want to use, you can create a new one in
the {user.home}/Susquehanna/phonoSystems directory. Finding the
Susquehanna directory is mentioned in Section 2.3. Susquehanna cur-
rently does not support switching between phonological systems inside
the application itself, however the .language file for your language can
be edited to contain the new system in it. Susquehanna will have no
problem parsing a different system as long as it is syntactically correct!

3.2 Edit Phonology

Figure 3.3: The Edit Phonology
tool button.

The Edit Phonology book allows the user
to change what phonemes are in their lan-
guage, edit existing phonemes to add diacrit-
ics, and delete phonemes in their entirety.
Like the View Phonology book, it is a mono-
paged book. To add a phoneme, simply click
on the phoneme, then click the green button
on the right of the button to add it. Adding
diacritics to a phoneme (such as in the case
of /p h/ for example) is done by clicking the
phoneme, then clicking the yellow edit but-

ton. From here, a keyboard will pop up with every possible character in your
set phonological system. Add your diacritics, then click ”Submit” or press the
enter key to add diacritics to your phoneme. To delete a phoneme, click the
red delete button on the right of the phoneme button. There is no confirmation
for this, but if a phoneme is accidentally deleted, it can be rather simply added
back.

11

3.3 Phonotactics

Figure 3.4: The Phonotactics
tool button.

The Phonotactics book is currently a
placeholder, and has yet to be added. Click-
ing on the tool will simply give a blank book.

12

Chapter 4

The Orthography Tab

Figure 4.1: The Orthography tab, when first clicked.

The Orthography tab is all about how the language is written. This tab is
also one of the less-developed tabs, and most of it is a major work-in-progress.

13

4.1 View Orthography

Figure 4.2: The View Orthogra-
phy tool button.

The View Orthography book allows the
user to see what phonemes correspond to
what graphemes. On the left, there are con-
verters between phonemes and graphemes,
allowing the user to see how a given text
would likely be pronounced, or how a string
of phonemes would be spelled. On the right
page, all orthographic pairs are listed. Users
can sort this table either by phoneme, or by
grapheme. In the future, more will be added
to this page, for example the ability to view

the orthography in a given script.

4.2 Edit Orthography

Figure 4.3: The Edit Orthogra-
phy tool button.

The Edit Orthography book allows the
user to define new pairs of phonemes and
graphemes. This page is a proof-of-concept
at the moment, and is not necessarily ready
to be used. On the left page, pairs are de-
fined with phonemes going in the left input
and graphemes going in the right input. Or-
thography is also viewable in this book on the
right page, just as it is in the View Orthogra-
phy book.

4.3 Script

Figure 4.4: The Script tool but-
ton.

The Script book is a placeholder for a
planned feature. Clicking on the Script tool
simply returns a blank book.

14

Chapter 5

The Grammar Tab

The grammar tab is a placeholder tab for a planned update. Currently, the
grammar tab does not contain any usable tools.

15

Chapter 6

The Lexicon Tab

Figure 6.1: The Lexicon tab, when first clicked.

The Lexicon tab is mainly about the words of a language. This tab has tools
for adding and finding words, and will have more tools as updates continue.

16

6.1 View Words

Figure 6.2: The View Words
tool button.

The View Words book contains all of the
words in the selected language. On the left
page, every word available is shown, along-
side its pronunciation, etymology, synonyms,
homonyms, creation date, and last edit date.
This book is somewhat of a proof-of-concept,
and is likely to change in the future. One
thing that will most certainly change is the
display of words, as the boxes are occasion-
ally unaligned. As Susquehanna is still in a
pre-release state, this is to be expected.

For developers: In the past, words could have source languages at-
tached to them. This was somewhat broken, and has been removed. It
will come back in a future update.

6.2 Edit Words

Figure 6.3: The Edit Words tool
button.

The Edit Words book allows the user to
add new words, and to check to make sure
they are not adding accidental duplicates. On
the left page, a form with the word, mean-
ing, pronunciation, etymology, and source
language as options allows the user to add
words. On the right page, a simplified word
view allows for the user to make sure they are
not adding accidental duplicates. Adding a
word on this page automatically checks the
dictionary for any synonyms and homonyms,

and will display as such on the View Words book.

17

Chapter 7

The Settings Tab

Like the grammar tab, the settings tab is a placeholder for a planned update.
Currently, the settings tab does not contain any usable tools.

18

